Abstract

Secret key exchange relies on the creation of correlated signals, serving as the raw resource for secure communication. Thermal states exhibit Hanbury Brown and Twiss correlations, which offer a promising avenue for generating such signals. In this paper, we present an experimental implementation of a central broadcast thermal-state quantum key distribution (QKD) protocol in the microwave region. Our objective is to showcase a straightforward method of QKD utilizing readily available broadcasting equipment. Unlike conventional approaches to thermal-state QKD, we leverage displaced thermal states. These states enable us to share the output of a thermal source among Alice, Bob, and Eve via both waveguide channels and free space. Through measurement and conversion into bit strings, our protocol produces key-ready bit strings without the need for specialized equipment. By harnessing the inherent noise in thermal broadcasts, our setup facilitates the recovery of distinct bit strings by all parties involved.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.