Abstract

To prove the security of quantum key distribution (QKD) protocols, several assumptions have to be imposed on users' devices. From an experimental point of view, it is preferable that such theoretical requirements are feasible and the number of them is small. In this paper, we provide a security proof of a QKD protocol where the usage of any light source is allowed as long as it emits two independent and identically distributed (i.i.d.) states. Our QKD protocol is composed of two parts: the first part is characterization of the photon-number statistics of the emitted signals up to three-photons based on the method [Opt. Exp. 27, 5297 (2019)], followed by running our differential-phase-shift (DPS) protocol [npj Quantum Inf. 5, 87 (2019)]. It is remarkable that as long as the light source emits two i.i.d. states, even if we have no prior knowledge of the light source, we can securely employ it in the QKD protocol. As this result substantially simplifies the requirements on light sources, it constitutes a significant contribution on realizing truly secure quantum communication.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.