Abstract

The spin-1/2 quantum Ising chain in a transverse random magnetic field is studied by means of the density-matrix renormalization group. The system evolves from an ordered to a paramagnetic state as the amplitude of the random field is increased. The dependence of the magnetization on a uniform magnetic field in the z direction and the spontaneous magnetization as a function of the amplitude of the transverse random magnetic field are determined. The behavior of the spin-spin correlation function both above and at criticality is studied. The scaling laws for magnetization and correlation functions are tested against previous numerical and renormalization-group results.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call