Abstract

We have explored the potential energy surface of the triplet oxygen atom O(3P) reaction with 1,3-butadiene at CBS-QB3 levels of theory. Possible different pathways have been determined to better understand the reaction mechanism. Thus, the first pathway of the oxidation of 1,3-butadiene by the triplet oxygen O(3P) is show that the major product is CH3-CO-CH=CH2. The results agree with those obtained experimentally in relative to the reaction enthalpies. The transition state theory (TST) was employed to compute rate constants over the temperature range 297-798K. The obtained results have shown that the electrophilic O-addition pathways on the double bond are dominant up in the temperature range. The activation energy is in line with the proposed addition mechanism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call