Abstract

We theoretically propose a scheme to perform rotation sensing in a Whispering-gallery-mode resonator setup. With the assistance of a large detuned two-level atom, which induces the effective coupling between clockwise and counterclockwise propagating modes in the resonator, we realize an effective interferometry with SU(2) algebraic structure. By studying the quantum Fisher information of the system, we find that the estimate accuracy for the angular velocity of the rotation can achieve and even break the Heisenberg limit in linear and nonlinear setup, respectively. The high performance of quantum metrology is proved to be associated with the state compressibility during the time evolution. We hope that our investigation will be useful in the design of a quantum gyroscope based on spinning resonators.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.