Abstract

We analyze the effects of quantum correlations on the parameter precision in an interferometric configuration. As probe states, we consider a class of two-qubit states for which the analytical expression of the quantum interferometric power, quantifying the quantum correlations, is explicitly derived. Also, we give and analyze the local quantum Fisher information, which evaluates the sensitivity of the probe state to the phase shift, for some relevant local Hamiltonians. The discord-like quantum correlations based on the notion of quantum interferometric power are compared with the original quantum discord based on von Neumann entropy. We also examine the significance of quantum correlations in enhancing the precision of the phase estimation. Our study corroborates the recent series of investigations focusing on the role of quantum correlations other than entanglement on the efficiency of quantum metrology protocols.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call