Abstract

In this work, we study the phenomena of quantum-interference-assisted magnon blockade and magnon antibunching in a weakly interacting hybrid ferromagnet-superconductor system. The magnon excitations in two yttrium iron garnet spheres are indirectly coupled to a superconducting qubit through microwave cavity modes of two mutually perpendicular cavities. We find that when one of the magnon modes is driven by a weak microwave field, the destructive interference between more than two distinct transition pathways restricts the simultaneous excitation of two magnons. We analyze the magnon correlations in the driven magnon mode for the case of zero detunings as well as finite detunings of the magnon modes and the qubit. We show that the magnon antibunching can be tuned by changing the magnon-qubit coupling strength ratio and the driving detuning. Our work proposes a possible scheme that has a significant role in the construction of single magnon generating devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.