Abstract

The cavity field spectra of two modes field both in the binomial state interacting with a two-level atom in an ideal cavity is investigated. The results for the weak initial fields are calculated. The influence of the quantum interference on the cavity field spectra is discussed. It’s shown that the quantum interference term performs periodical damped oscillation with the changing of the difference of the two field frequencies. The periodicity is about 016 g(g is the coupling coefficient between the atom and the fields). When the difference of the two field frequencies is larger than 16 g, the quantum interference term can be ignored. Otherwise, the quantum interference term is related to photon number of initial field. The quantum interference term strengthens gradually with the photon number increasing, but weakens abruptly when the maximal photon number becomes greater than 4 The quantum interference phenomenon almost vanishes when the photon number is greater than 6.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.