Abstract

A new mechanism is proposed to explain the slow conductance fluctuations in the conductance-gate voltage plot observed in the nanotube electron resonators. It is found that the slow conductance fluctuation is an intrinsic quantum interference phenomenon and exists in all metallic nanotube resonators except zigzag ones. Analytical expressions for both slow and rapid oscillation periods of the conductance fluctuations have been derived, which are well consistent with the existing experiments. It is predicted that the ratio of the slow oscillation period to the rapid one is independent of the gate-voltage efficiency, and determined only by the nanotube length used in experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.