Abstract

We investigate the influence of quantum interference (QI) and broken spin-symmetry on the thermoelectric response of node-possessing junctions, finding a dramatic enhancement of the spin-thermopower (Ss), figure-of-merit (ZsT), and maximum thermodynamic efficiency (ηsmax) caused by destructive QI. Using many-body and single-particle methods, we calculate the response of 1,3-benzenedithiol and cross-conjugated molecule-based junctions subject to an applied magnetic field, finding nearly universal behavior over a range of junction parameters with Ss, ZsT, and reaching peak values of , 1.51, and 28% of Carnot efficiency, respectively. We also find that the quantum-enhanced spin-response is spectrally broad, and the field required to achieve peak efficiency scales with temperature. The influence of off-resonant thermal channels (e.g., phonon heat transport) on this effect is also investigated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.