Abstract

There has been great interest in studying optical and transport properties of multiple quantum well (MQW) structures. In these “artificial molecules”, energy quantization and the wave nature of the carriers have been used to design new devices, e.g., intersubband lasers. The understanding of carrier transport in MQWs is important for the design of lasers with high modulation speed. In this talk, we report on a new observation of a quantum interference effect in the photocurrent spectrum of weakly coupled bound-to-continuum MQWs. Using this effect, we analyze the electric field domain (EFD) formation in the superlattice [1].

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.