Abstract

The effect of electron spin-orbit interactions on chemical reaction dynamics has been a topic of much research interest. Here we report a combined experimental and theoretical study on the effect of electron spin and orbital angular momentum in the F + HD → HF + D reaction. Using a high-resolution imaging technique, we observed a peculiar horseshoe-shaped pattern in the product rotational-state-resolved differential cross sections around the forward-scattering direction. The unusual dynamics pattern could only be explained properly by highly accurate quantum dynamics theory when full spin-orbit characteristics were considered. Theoretical analysis revealed that the horseshoe pattern was largely the result of quantum interference between spin-orbit split-partial-wave resonances with positive and negative parities, providing a distinctive example of how spin-orbit interaction can effectively influence reaction dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.