Abstract

We present the findings of quantized conductance (QC), Coulomb staircase (CS) and local tunneling spectroscopy (LTS) techniques which reveal the single-hole confinement and charging phenomena in the smooth and modulated quantum wires created electrostatically inside self-assembly longitudinal (SLQW) and lateral (SLaQW) silicon quantum wells. The current- voltage (CV) characteristics obtained are in a good agreement with the data of the theoretical calculations taking account of quantum interference effects in the field-dependent value of the transmission coefficient through the quantum wires that exhibit the different degree of a modulation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.