Abstract

The quantum interest conjecture of Ford and Roman states that any negative energy flux in a free quantum field must be preceded or followed by a positive flux of greater magnitude, and the surplus of positive energy grows the further the positive and negative fluxes are apart. In addition, the maximum possible separation between the positive and negative energy decreases the larger the amount of negative energy. We prove that the quantum interest conjecture holds for arbitrary fluxes of non-interacting scalar fields in 4D Minkowski spacetime, and discuss the consequences in attempting to violate the second law of thermodynamics using negative energy. We speculate that quantum interest may also hold for the Electromagnetic and Dirac fields, and might be applied to certain curved spacetimes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.