Abstract

We apply quantum integration to elementary particle-physics processes. In particular, we look at scattering processes such as e+e−→qq¯ and e+e−→qq¯′W. The corresponding probability distributions can be first appropriately loaded on a quantum computer using either quantum Generative Adversarial Networks or an exact method. The distributions are then integrated using the method of Quantum Amplitude Estimation which shows a quadratic speed-up with respect to classical techniques. In simulations of noiseless quantum computers, we obtain per-cent accurate results for one- and two-dimensional integration with up to six qubits. This work paves the way towards taking advantage of quantum algorithms for the integration of high-energy processes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.