Abstract

We consider a gauge theory on the 5-d $\kappa$-Minkowski which can be viewed as the noncommutative analog of a $U(1)$ gauge theory. We show that the Hermiticity condition obeyed by the gauge potential $A_\mu$ is necessarily twisted. Performing a BRST gauge-fixing with a Lorentz-type gauge, we carry out a first exploration of the one loop quantum properties of this gauge theory. We find that the gauge-fixed theory gives rise to a non-vanishing tadpole for the time component of the gauge potential, while there is no non-vanishing tadpole 1-point function for the spatial components of $A_\mu$. This signals that the classical vacuum of the theory is not stable against quantum fluctuations. Possible consequences regarding the symmetries of the gauge model and the fate of the tadpole in other gauges of non-covariant type are discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.