Abstract

Clustering is an unsupervised learning technique widely used in the field of data mining and analysis. Clustering encompasses many specific methods, among which the K-means algorithm maintains the predominance of popularity with respect to its simplicity and efficiency. However, its efficiency is significantly influenced by the initial solution and it is susceptible to being stuck in a local optimum. To eliminate these deficiencies of K-means, this paper proposes a quantum-inspired moth-flame optimizer with an enhanced local search strategy (QLSMFO). Firstly, quantum double-chain encoding and quantum revolving gates are introduced in the initial phase of the algorithm, which can enrich the population diversity and efficiently improve the exploration ability. Second, an improved local search strategy on the basis of the Shuffled Frog Leaping Algorithm (SFLA) is implemented to boost the exploitation capability of the standard MFO. Finally, the poor solutions are updated using Levy flight to obtain a faster convergence rate. Ten well-known UCI benchmark test datasets dedicated to clustering are selected for testing the efficiency of QLSMFO algorithms and compared with the K-means and ten currently popular swarm intelligence algorithms. Meanwhile, the Wilcoxon rank-sum test and Friedman test are utilized to evaluate the effect of QLSMFO. The simulation experimental results demonstrate that QLSMFO significantly outperforms other algorithms with respect to precision, convergence speed, and stability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call