Abstract
Computational fluid dynamics is both a thriving research field and a key tool for advanced industry applications. However, the simulation of turbulent flows in complex geometries is a compute-power intensive task due to the vast vector dimensions required by discretized meshes. We present a complete and self-consistent full-stack method to solve incompressible fluids with memory and run time scaling logarithmically in the mesh size. Our framework is based on matrix-product states, a compressed representation of quantum states. It is complete in that it solves for flows around immersed objects of arbitrary geometries, with non-trivial boundary conditions, and self-consistent in that it can retrieve the solution directly from the compressed encoding, i.e. without passing through the expensive dense-vector representation. This framework lays the foundation for a generation of more efficient solvers of real-life fluid problems.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.