Abstract

The firefly algorithm and cuckoo search are the meta-heuristic algorithms efficient to determine the solution for the searching and optimization problems. The current work proposes an integrated concept of quantum-inspired firefly algorithm with cuckoo search (IQFACS) that adapts both algorithms’ expedient attributes to optimize the solution set. In the IQFACS algorithm, the quantum-inspired firefly algorithm (QFA) ensures the diversification of fireflies-based generated solution set using the superstitions quantum states of the quantum computing concept. The cuckoo search (CS) algorithm uses the Lévy flight attribute to escape the QFA from the premature convergence and stagnation stage more effectively than the quantum principles. Here, the proposed algorithm is applied for the application of optimal path planning. Before using the proposed algorithm for path planning, the algorithm is tested on different optimization benchmark functions to determine the efficacy of the proposed IQFACS algorithm than the firefly algorithm (FA), CS, and hybrid FA and CS algorithm. Using the proposed IQFACS algorithm, path planning is performed on the satellite images with vegetation as the focused region. These satellite images are captured from Google Earth and belong to the different areas of India. Here, satellite images are converted into morphologically processed binary images and considered as maps for path planning. The path planning process is also executed with the FA, CS, and QFA algorithms. The performance of the proposed algorithm and other algorithms are accessed with the evaluation of simulation time and the number of cycles to attain the shortest path from defined source to destination. The error rate measure is also incorporated to analyze the overall performance of the proposed IQFACS algorithm over the other algorithms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.