Abstract

The battery management system (BMS) is vital to the condition monitoring and charging-discharging control of battery packs in electric vehicles. Its reliability is highly concerned and degradation tests are generally conducted to evaluate the long-term reliability of this kind of highly reliable systems. As the result of increasingly complex product structure and the environmental impact, the degradation behavior of BMS would show unbalanced and heterogeneous characteristics. The usual approaches with unimodal degradation amount distribution could not correctly model the phenomenon. This paper presents a novel quantum-inspired degradation model to account for the two-cluster degradation trend of electronic devices. The deterioration of performance is modeled based on the interaction between the system and surroundings, with the discrete-time quantum walk describing the reduced dynamics of the system. The degradation dataset of a BMS is used to verify the validity and superiority of the proposed method. In general, this paper provides an alternative approach to the degradation modeling and reliability assessment of complex electronic devices. It explores future research direction with the understanding of reliability science.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.