Abstract

Conventional quantum computing schemes are incompatible with nanometer-scale "hardware," where the closely packed spins cannot be individually controlled. We report the first experimental demonstration of a global control paradigm: logical qubits delocalize along a spin chain and are addressed via the two terminal spins. Using NMR studies on a three-spin molecule, we implement a globally clocked quantum mirror that outperforms the equivalent swap network. We then extend the protocol to support dense qubit storage and demonstrate this experimentally via Deutsch and Deutsch-Jozsa algorithms.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.