Abstract

We propose a scheme to realize controlled phase-flip gate between two single photons through a single quantum dot (QD) in a slow-light photonic crystal (PhC) waveguide. Enhanced Purcell factor and large β-factor lead to high gate fidelity over broadband frequencies compared to cavity-assisted system. The excellent physical integration of this PhC waveguide system provides tremendous potential for large-scale quantum information processing. Then we generalize to a multi-atom controlled phase-flip gate based on waveguide system in Sagnac interferometer. Through the Sagnac interferometer, the single photon adds the phase-flip operation on the atomic state without changing the photonic state. The controlled phase-flip gate on the atoms can be successfully constructed with high fidelity in one step, even without detecting the photon.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.