Abstract
We have studied the quantum information processing phenomenon in photonic crystals doped with four-level nanoparticles. This phenomenon occurs due to the switching mechanism in the system. We consider that one of the transition energies of nanoparticles is coupled near resonantly with a photonic band gap edge. The dipole-dipole interaction between the nanoparticles has also been included. It is found that the system switches between the transparent and nontransparent states due to the dipole-dipole interaction and the band edge coupling. This is an interesting finding and can be used to produce logical photon switches in the quantum information processing.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.