Abstract

For convex optimization problems Bregman divergences appear as regret functions. Such regret functions can be defined on any convex set, but if a sufficiency condition is added the regret function must be proportional to information divergence and the convex set must be spectral. Spectral sets are sets where different orthogonal decompositions of a state into pure states have unique mixing coefficients. Only on such spectral sets it is possible to define well behaved information theoretic quantities like entropy and divergence. It is only possible to perform measurements in a reversible way if the state space is spectral. The most important spectral sets can be represented as positive elements of Jordan algebras with trace 1. This means that Jordan algebras provide a natural framework for studying quantum information.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.