Abstract
Experimental realizations of a two-qubit quantum logic gate based on cold atom collisions have been elusive mainly due to the decoherence effects introduced during the quantum gate operation, which cause transitions out of the two-qubit space and lead to a decreased gate operation fidelity. This type of decoherence effects, due to the non closeness of the interacting two-qubit system, are characteristic of the electromagnetic interaction, since the electromagnetic vacuum acts as a reservoir whose eigenmodes might become active during the gate operation. To describe the cold-atom collision we consider the quantum non-Hermitian dipole-dipole interaction instead of the less realistic s-scattering approach widely used in the literature. By adding an ancillary qubit, we take advantage of the spatial modulation of the non-Hermitian part of the interaction potential to obtain a "resonant" condition that should be satisfied to achieve lossless operation of a specific two-qubit quantum phase-gate. We demonstrate that careful engineering of the collision is required to obtain a specific truth table and to suppress the effects inherent in the openness of the system arising from the electromagnetic interaction.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.