Abstract

The information theoretic concepts are crucial to study the quantum mechanical systems. In this paper, the information densities of [Formula: see text]-symmetric potential have been demonstrated and their properties deeply analyzed. The position space and momentum space information entropy is obtained and Bialynicki-Birula–Mycielski inequality is saturated for different parameters of the potential. Some interesting features of information entropy have been discussed. The variation in these entropies is described which gets saturated for specific values of the parameter. These have also been analyzed for the [Formula: see text]-symmetry breaking case. Further, the entropy squeezing phenomenon has been investigated in position space as well as momentum space. Interestingly, [Formula: see text] phase transition conjectures the entropy squeezing in position space and momentum space.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.