Abstract

The asymptotics of the Boltzmann-Shannon information entropy as well as the Renyi entropy for the quantum probability density of a single-particle system with a confining (i.e., bounded below) power-type potential ${V(x)=x}^{2k}$ with $k\ensuremath{\in}N$ and $x\ensuremath{\in}R,$ is investigated in the position and momentum spaces within the semiclassical (WKB) approximation. It is found that for highly excited states both physical entropies, as well as their sum, have a logarithmic dependence on its quantum number not only when $k=1$ (harmonic oscillator), but also for any fixed k. As a by-product, the extremal case $\stackrel{\ensuremath{\rightarrow}}{k}\ensuremath{\infty}$ (the infinite well potential) is also rigorously analyzed. It is shown that not only the position-space entropy has the same constant value for all quantum states, which is a known result, but also that the momentum-space entropy is constant for highly excited states.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.