Abstract

Quantum inequalities (QI's) provide lower bounds on the averaged energy density of a quantum field. We show how the QI's for massless scalar fields in even dimensional Minkowski space may be reformulated in terms of the positivity of a certain self-adjoint operator - a generalised Schroedinger operator with the energy density as the potential - and hence as an eigenvalue problem. We use this idea to verify that the energy density produced by a moving mirror in two dimensions is compatible with the QI's for a large class of mirror trajectories. In addition, we apply this viewpoint to the `quantum interest conjecture' of Ford and Roman, which asserts that the positive part of an energy density always overcompensates for any negative components. For various simple models in two and four dimensions we obtain the best possible bounds on the `quantum interest rate' and on the maximum delay between a negative pulse and a compensating positive pulse. Perhaps surprisingly, we find that - in four dimensions - it is impossible for a positive delta-function pulse of any magnitude to compensate for a negative delta-function pulse, no matter how close together they occur.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.