Abstract
Magnetic atoms adsorbed on surfaces have a quenched orbital moment while their ground-state spin multiplet is partially split as a consequence of the spin-orbit coupling which, even if intrinsically weak, has a large effect due to the abrupt change of the potential at the surface. Such metal adsorbates should be modelled using quantum impurity models that include the relevant internal degrees of freedom and the interaction terms, in particular the magnetic anisotropy and the Kondo exchange coupling. When adsorbed on superconducting surfaces, these impurities have complex spectra of sub-gap excitations due to magnetic anisotropy splitting and Kondo screening. Both anisotropy splitting and Zeeman splitting due to the external magnetic field are significantly renormalized by the coupling to the substrate electrons. In this work I discuss the quantum-to-classical crossover and the applicability of classical static-local-spin picture for discussing magnetic nanostructures on superconductors.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.