Abstract
A quantum circuit implementation of Powell’s conjugate direction method (“Powell’s method”) is proposed based on quantum basic transformations in this study. Powell’s method intends to find the minimum of a function, including a sequence of parameters, by changing one parameter at a time. The quantum circuits that implement Powell’s method are logically built by combining quantum computing units and basic quantum gates. The main contributions of this study are the quantum realization of a quadratic equation, the proposal of a quantum one-dimensional search algorithm, the quantum implementation of updating the searching direction array (SDA), and the quantum judgment of stopping the Powell’s iteration. A simulation demonstrates the execution of Powell’s method, and future applications, such as data fitting and image registration, are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Advanced Computational Intelligence and Intelligent Informatics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.