Abstract

A quantum hue, saturation, and lightness model is proposed in which a triple qubit sequence (QHTS) is encoded and used as a data model for the implementation of quantum image scaling. The preparation and retrieval of QHTS images is presented, in which only q+2 qubits (where q is the bit depth) are required to encode color information while retaining relevant HSL image features and operability. A conventional nearest neighbor interpolation was adopted to implement quantum image up-scaling and down-scaling operations, from which two other scaling applications were developed. One such technique is a form of quantum steganography based on end-to-end encryption, which provides high capacity while ensuring the security of carrier images and secret messages. The other is a spatial remote sensing image fusion algorithm, based on QHTS images, which pioneers quantum pseudocolor composites of multi-spectral and panchromatic images. Simulation experiments demonstrated the proposed methodology provides an embedding capacity more than double that of existing quantum image steganography algorithms. In addition, a complexity analysis demonstrated the efficiency of the two proposed quantum image scaling applications, which take full advantage of quantum parallelism.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call