Abstract
Recent advances in cold atom experimentation suggest that studies of quantum two-dimensional melting of dipolar molecules, with dipoles aligned perpendicular to ordering plane, may be on the horizon. An intriguing aspect of this problem is that two-dimensional classical aligned dipoles (already studied in great detail in soft matter experiments on magnetic colloids) are known to melt via a two-stage process, with an intermediate hexatic phase separating the usual crystal and isotropic fluid phases. We estimate here the effect of quantum fluctuations on this hexatic phase, for both dipolar systems and charged Wigner crystals. Our approximate phase diagrams rely on a pair of Lindemann criteria, suitably adapted to deal with the effects of thermal fluctuations in two dimensions. As part of our analysis, we determine the phonon spectra of quantum particles on a triangular lattice interacting with repulsive $1/{r}^{3}$ and $1/r$ potentials. A large softening of the transverse and longitudinal phonon frequencies, due to both lattice effects and quantum fluctuations, plays a significant role in our analysis. The hexatic phase is predicted to survive down to very low temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.