Abstract

We investigate how the criticality of the quantum Hall plateau transition in disordered graphene differs from those in the ordinary quantum Hall systems, based on the honeycomb lattice with ripples modeled as random hoppings. The criticality of the graphene-specific n = 0 Landau level is found to change dramatically to an anomalous, almost exact fixed point as soon as we make the random hopping spatially correlated over a few bond lengths. We attribute this to the preserved chiral symmetry and suppressed scattering between K and K' points in the Brillouin zone. The results suggest that a fixed point for random Dirac fermions with chiral symmetry can be realized in freestanding, clean graphene with ripples.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call