Abstract

An almost ideal two-dimensional system of electrons can now be easily created in semiconductor heterojunctions. The quantum Hall effect state of the electrons is induced via the application of a strong perpendicular magnetic under specific quantum conditions. The most robust integer and/or fractional quantum Hall states already observed show the expected characteristic magnetoresistance for such systems. However, anisotropic patterns and features in transport properties have been seen for a few other peculiar cases. The origin of such anisotropic patterns may have various mechanisms or may also be due the specific details of the system and material such as the isotropic or anisotropic nature of the effective mass of electrons, the nature of the host substrate parameters, the nature of the interaction potentials, as well as other subtler effects. The interplay between all these factors can lead to many outcomes. In this work we consider small quantum Hall states of electrons at filling factor 1/6 and study the appearance of such anisotropic patterns as a result of some form of innate interaction anisotropy in the system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.