Abstract

We study both the continuous model and the discrete model of the quantum Hall effect (QHE) on the hyperbolic plane in the presence of disorder, extending the results of an earlier paper. Here we model impurities, that is we consider the effect of a random or almost periodic potential as opposed to just periodic potentials. The Hall conductance is identified as a geometric invariant associated to an algebra of observables, which has plateaus at gaps in extended states of the Hamiltonian. We use the Fredholm modules defined in Comm. Math. Phys. 190 (1998), 629–673, to prove the integrality of the Hall conductance in this case. We also prove that there are always only a finite number of gaps in extended states of any random discrete Hamiltonian.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.