Abstract

The InAs/GaAs structures consisting of quantum-dot layers with electronic properties typical of two-dimensional systems are investigated. It is found that, at a low concentration of charge carriers, the variable-range-hopping conductivity is observed at low temperatures. The localization length corresponds to characteristic quantum-dot cluster sizes determined using atomic-force microscopy (AFM). The quantum Hall effect-insulator transition induced by a magnetic field occurs in InAs/GaAs quantum-dot layers with metallic conductivity. The resistivities at the transition point exceed the resistivities characteristic of electrons in heterostructures and quantum wells. This can be explained by the large-scale fluctuations of the potential and, hence, the electron density.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call