Abstract

The Hall resistance of a homogeneous electron system is well known to be antisymmetric with respect to the magnetic field and the sign of charge carriers. We have observed that such symmetries no longer hold in planar hybrid structures consisting of partly single layer graphene (SLG) and partly bilayer graphene (BLG) in the quantum Hall (QH) regime. In particular, the Hall resistance across the SLG and BLG interface is observed to exhibit quantized plateaus that switch between those characteristic of SLG QH states and BLG QH states when either the sign of the charge carriers (controlled by a back gate) or the direction of the magnetic field is reversed. Simultaneously reversing both the carrier type and the magnetic field gives rise to the same quantized Hall resistances. The observed SLG-BLG interface QH states, with characteristic asymmetries with respect to the signs of carriers and magnetic field, are determined only by the chirality of the QH edge states and can be explained by a Landauer-B\"uttiker analysis applied to such graphene hybrid structures involving two regions of different Landau level structures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.