Abstract

We analyze the quantum Hall effect in single layer graphene with bilayer stripe defects. Such defects are often encountered at steps in the substrate of graphene grown on silicon carbide. We show that AB or AA stacked bilayer stripes result in large Hall conductivity fluctuations that destroy the quantum Hall plateaux. The fluctuations are a result of the coupling of edge states at opposite edges through currents traversing the stripe. Upon rotation of the second layer with respect to the continuous monolayer (a twisted-bilayer stripe defect), such currents decouple from the extended edge states and develop into long-lived discrete quasi bound states circulating around the perimeter of the stripe. Backscattering of edge modes then occurs only at precise resonant energies, and hence the quantum Hall plateaux are recovered as twist angle grows.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.