Abstract

It is shown that the principle of locality and noncommutative geometry can be connected by a sheaf theoretical method. In this framework quantum spaces are introduced and examples in mathematical physics are given. Within the language of quantum spaces noncommutative principal and vector bundles are defined and their properties are studied. Important constructions in the classical theory of principal fibre bundles like associated bundles and differential calculi are carried over to the quantum case. At the endq-deformed instanton models are introduced for every integral index.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.