Abstract
This paper is intended to make explicit some aspects of the interactions which have recently come to light between the theory of classical knots and links, the theory of monoidal categories, Hopf-algebra theory, quantum integrable systems, the theory of exactly solvable models in statistical mechanics, and quantum field theories. The main results herein show an intimate relation between representations of certain monoidal categories arising from the study of new knot invariants or from physical considerations and quantum groups (that is, Hopf algebras). In particular categories of modules and comodules over Hopf algebras would seem to be much more fundamental examples of monoidal categories than might at first be apparent. This fundamental role of Hopf algebras in monoidal categories theory is also manifest in the Tannaka duality theory of Deligne and Mime [8a], although the relationship of that result and the present work is less clear than might be hoped.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Mathematical Proceedings of the Cambridge Philosophical Society
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.