Abstract
We show that an analog of the physics at the Planck scale can be found in the propagation of tightly focused laser beams. Various equations that occur in generalized quantum mechanics are formally identical to those describing the nonlinear nonlocal propagation of nonparaxial laser beams. The analysis includes a generalized uncertainty principle and shows that the nonlinear focusing of a light beam with dimensions comparable to the wavelength corresponds to the spontaneous excitation of the so-called maximally localized states. The approach, driven by the ideas of the quantum gravity physics, allows one to predict the existence of self-trapped subwavelength solitary waves for both focusing and defocusing nonlinearities, and opens the way to laboratory simulations of phenomena that have been considered to be inaccessible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.