Abstract

We begin by studying inventory accumulation at a LIFO (last-in-first-out) retailer with two products. In the simplest version, the following occur with equal probability at each time step: first product ordered, first product produced, second product ordered, second product produced. The inventory thus evolves as a simple random walk on $\mathbb{Z}^{2}$. In more interesting versions, a $p$ fraction of customers orders the “freshest available” product regardless of type. We show that the corresponding random walks scale to Brownian motions with diffusion matrices depending on $p$. We then turn our attention to the critical Fortuin–Kastelyn random planar map model, which gives, for each $q>0$, a probability measure on random (discretized) two-dimensional surfaces decorated by loops, related to the $q$-state Potts model. A longstanding open problem is to show that as the discretization gets finer, the surfaces converge in law to a limiting (loop-decorated) random surface. The limit is expected to be a Liouville quantum gravity surface decorated by a conformal loop ensemble, with parameters depending on $q$. Thanks to a bijection between decorated planar maps and inventory trajectories (closely related to bijections of Bernardi and Mullin), our results about the latter imply convergence of the former in a particular topology. A phase transition occurs at $p=1/2$, $q=4$.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call