Abstract

Matter-wave interferometers have fundamental applications for gravity experiments such as testing the equivalence principle and the quantum nature of gravity. In addition, matter-wave interferometers can be used as quantum sensors to measure the local gravitational acceleration caused by external massive moving objects, thus lending itself for technological applications. In this paper, we will establish a three dimensional model to describe the gravity gradient signal from an external moving object, and theoretically investigate the achievable sensitivities using the matter-wave interferometer based on the Stern-Gerlach set-up. As an application we will consider the Mesoscopic Interference for Metric and Curvature (MIMAC) and Gravitational wave detection scheme [New J. Phys. 22, 083012 (2020)] and quantify its sensitivity to gravity gradients using frequency-space analysis. We will consider objects near Earth-based experiments and space debris in proximity of satellites and estimate the minimum detectable mass of the object as a function of their distance, velocity, and orientation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.