Abstract
We study the quantum-gravitational corrections to the power spectrum of a gauge-invariant inflationary scalar perturbations in a closed model of a universe. We consider canonical quantum gravity as an approach to quantizing gravity. This leads to the Wheeler-DeWitt equation, which has been studied by applying a semiclassical Born–Oppenheimer type of approximation. At the corresponding orders of approximation, we recover both the uncorrected and quantum-gravitationally corrected Schrödinger equations for the perturbation modes from which we calculate the quantum-gravitational corrections to the power spectrum in the slow-roll regime. The results are compared to the power spectra for the flat model of the universe.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.