Abstract

We investigate the dynamics of interacting quantum planar rotors as the building blocks of gear trains and nanomachinery operating in the quantum regime. Contrary to a classical hard-gear scenario of rigidly interlocked teeth, we consider the coherent contactless coupling through a finite interlocking potential, and we study the transmission of motion from one externally driven gear to the next as a function of the coupling parameters and gear profile. The transmission is assessed in terms of transferred angular momentum and transferred mechanical work. We highlight the quantum features of the model such as quantum state revivals in the interlocked rotation and interference-enhanced transmission, which could be observed in prospective rotational optomechanics experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.