Abstract

This short note is a review of the intriguing connection between the quantum Gaudin model and the classical KP hierarchy recently established in [1]. We construct the generating function of integrals of motion for the quantum Gaudin model with twisted boundary conditions (the master T-operator) and show that it satisfies the bilinear identity and Hirota equations for the classical KP hierarchy. This implies that zeros of eigenvalues of the master T-operator in the spectral parameter have the same dynamics as the Calogero-Moser system of particles.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.