Abstract

Neutral atoms are promising for large-scale quantum computing, but accurate neutral-atom entanglement depends on large Rydberg interactions which strongly limit the interatomic distances. Via a phase accumulation in detuned Rabi cycles enabled by a Rydberg interaction of similar magnitude to the Rydberg Rabi frequency, we study a controlled-phase gate with an arbitrary phase and extend it to the controlled-NOT gate. The gates need only three steps for coupling one Rydberg state, depend on easily accessible van der Waals interaction that naturally arises between distant atoms, and have no rotation error in the weak interaction regime. Importantly, they can work with very weak interactions so that well-separated qubits can be entangled. The gates are sensitive to the irremovable fluctuation of Rydberg interactions, but can still have a fidelity over 98\% with realistic position fluctuation of qubits separated over 20~$\mu$m.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.