Abstract

We present schemes for geometric phase compensation in an adiabatic passage which can be used for the implementation of quantum logic gates with atomic ensembles consisting of an arbitrary number of strongly interacting atoms. Protocols using double sequences of stimulated Raman adiabatic passage (STIRAP) or adiabatic rapid passage (ARP) pulses are analyzed. Switching the sign of the detuning between two STIRAP sequences, or inverting the phase between two ARP pulses, provides state transfer with well-defined amplitude and phase independent of atom number in the Rydberg blockade regime. Using these pulse sequences we present protocols for universal single-qubit and two-qubit operations in atomic ensembles containing an unknown number of atoms.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.