Abstract

We theoretically investigated the implementation of universal quantum gates in hyperfine levels of ultracold heteronuclear polar molecules in their lowest rotational manifolds. Quantum bits are manipulated by microwave pulses, taking advantage of the strong state mixing generated by the hyperfine interactions. Gate operations are either driven by a sequence of Gaussian pulses or by a pulse shaped by optimal control theory. Alkaline molecules of experimental interest are considered. We show that high fidelity gates can be driven by microsecond pulses. The richness of the energy structure and the state mixing offer promising perspectives for the manipulation of a large number of qubits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call