Abstract
Sub-nanosecond photodriven electron transfer from a molecular donor to an acceptor can be used to generate a radical pair (RP) having two entangled electron spins in a well-defined pure initial singlet quantum state to serve as a spin-qubit pair (SQP). Achieving good spin-qubit addressability is challenging because many organic radical ions have large hyperfine couplings (HFCs) in addition to significant g-anisotropy, which results in significant spectral overlap. Moreover, using radicals with g-factors that deviate significantly from that of the free electron results in difficulty generating microwave pulses with sufficiently large bandwidths to manipulate the two spins either simultaneously or selectively as is necessary to implement the controlled-NOT (CNOT) quantum gate essential for quantum algorithms. Here, we address these issues by using a covalently linked donor-acceptor(1)-acceptor(2) (D-A1-A2) molecule with significantly reduced HFCs that uses fully deuterated peri-xanthenoxanthene (PXX) as D, naphthalenemonoimide (NMI) as A1, and a C60 derivative as A2. Selective photoexcitation of PXX within PXX-d9-NMI-C60 results in sub-nanosecond, two-step electron transfer to generate the long-lived PXX•+-d9-NMI-C60•- SQP. Alignment of PXX•+-d9-NMI-C60•- in the nematic liquid crystal 4-cyano-4'-(n-pentyl)biphenyl (5CB) at cryogenic temperatures results in well-resolved, narrow resonances for each electron spin. We demonstrate both single-qubit gate and two-qubit CNOT gate operations using both selective and nonselective Gaussian-shaped microwave pulses and broadband spectral detection of the spin states following the gate operations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.